中文 |

Newsroom

北京pk赛车10开奖遗漏:铁矿石澳大利亚不出口中国

2020-09-24 03:21:59

《北京pk赛车10开奖遗漏》

Air seems to be the most natural and available medium for transmitting and distributing power upon any general system like water or gas, and there is every probability of such a system existing at some future time. The power given out by the expansion of air is not equal to the power consumed in compressing it, but the loss is but insignificant compared with the advantages that may be gained in other ways. There is no subject more interesting, and perhaps few more important for an engineering student to study at this time, than the transmission of power and the transport of material by pneumatic apparatus.

Drawings represent and explain the machinery to which they relate as the symbols in algebra represent quantities, and in a degree admit of the same modifications and experiments to which the machinery itself could be subjected if it were already constructed. Drawings are also an important aid in developing designs or conceptions. It is impossible to conceive of, and retain in the mind, all the parts of a complicated machine, and their relation to each other, without some aid to fix the various ideas as they arise, and keep them in sight for comparison; like compiling statistics, the footings must be kept at hand for reference, and to determine the relation that one thing may bear to another.

Although a system but recently developed, the employment of hydraulic machinery for transmitting and applying power has reached an extended application to a variety of purposes, and gives promise of a still more extensive use in future. Considered as a means of transmitting regularly a constant amount [54] of power, water apparatus is more expensive and inferior in many respects to belts or shafts, and its use must be traced to some special principle involved which adapts hydraulic apparatus to the performance of certain duties. This principle will be found to consist in storing up power in such a manner that it may be used with great force at intervals; and secondly, in the facilities afforded for multiplying force by such simple mechanism as pumps. An engine of ten-horse-power, connected with machinery by hydraulic apparatus, may provide for a force equal to one hundred horse-power for one-tenth part of the time, the power being stored up by accumulators in the interval; or in other words, the motive power acting continuously can be accumulated and applied at intervals as it may be required for raising weights, operating punches, compressive forging, or other work of an intermittent character. Hydraulic machinery employed for such purposes is more simple and inexpensive than gearing and shafts, especially in the application of a great force acting for a considerable distance, and where a cylinder and piston represent a degree of strength which could not be attained with twice the amount of detail, if gearing, screws, levers, or other devices were employed instead.At the risk of laying down a proposition not warranted by science, I will mention, in connection with this matter of crystallisation, that metal when disposed in the form of a ring, for some strange reason seems to evade the influences which produce crystalline change. A hand-hammer, for example, may be worn away and remain fibrous; the links of chains and the tires of waggon wheels do not become crystallised; even the tires on locomotive wheels seem to withstand this influence, although the conditions of their use are such as to promote crystallisation.

Applied to steam-engines, the same rule holds good. Steam, as a motive agent, should first be studied, then the operation of steam machinery, and finally the construction of steam-engines. This is a rule that may not apply in all cases, but the exceptions are few.

Another peculiar feature in trip-hammers is the rapidity with which crystallisation takes place in the attachments for holding the die blocks to the helves, where no elastic medium can be interposed to break the concussion of the dies. Bolts to pass through the helve, although made from the most fibrous Swedish iron, will on some kinds of work not last for more than ten days' use, and often break in a single day. The safest mode of attaching die blocks, and the one most common, is to forge them solid, with an eye or a band to surround the end of the helve.

An excellent plan to retain what is learned, is to make notes. There is nothing will assist the memory more in learning mechanics than to write down facts as they are learned, even if such memoranda are never referred to after they are made.

Institute of Plasma Physics, Hefei Institutes of Physical Science (ASIPP, HFIPS) undertakes the procurement package of superconducting conductors, correction coil, superconducting feeder, power supply and diagnosis, accounting for nearly 80% of China's ITER procurement package.

"I am so proud of our team and it’s a great pleasure for me working here," said BAO Liman, an engineer from ASIPP, HFIPS, who was invited to sit near Chinese National flay on the podium at the kick-off ceremony to represent Chinese team. BAO, with some 30 ASIPP engineers, has been working in ITER Tokamak department for more than ten years. Due to the suspended international traveling by COVID-19, most of the Chinese people who are engaged in ITER construction celebrated this important moment at home through live broadcasting.

One of ASIPP’s undertakes, the number 6 poloidal field superconducting coil (or PF6 coil) , the heaviest superconducting coil in the world, was completed last year, and arrived at ITER site this June. PF6 timely manufacturing and delivery made a solid foundation for ITER sub-assembly, it will be installed at the bottom of the ITER cryostat.

Last year, a China-France Consortium in which ASIPP takes a part has won the bid of the first ITER Tokamak Assembly task, TAC-1, a core and important part of the ITER Tokamak assembly.

Exactly as Bernard BIGOT, Director-General of ITER Organization, commented at a press conference after the ceremony, Chinese team was highly regarded for what they have done to ITER project with excellent completion of procurement package.

 

The kick-off ceremony for ITER assembly (Image by Pierre Genevier-Tarel-ITER Organization) 

 

the number 6 poloidal field superconducting coil (Image by ASIPP, HFIPS) 

  

ITER-TAC1 Contract Signing Ceremony (Image by ASIPP, HFIPS)

World dignitaries celebrate a collaborative achievement

Related Articles
Contact Us
  • 86-1999-99883v685 (day)

    86-1999-99885z652 (night)

  • 86-1999-998853658 (day)

    86-1999-990253658 (night)

  • [email protected]

  • 52 Sanlihe Rd., Beijing,

    China (1008666x)

Copyright © 2002 - Chinese Academy of Sciences