中文 |

Newsroom

彩票追击令手机在线【KbJ】:珠峰高程登顶测量成功

2020-09-20 10:54:23

《彩票追击令手机在线【KbJ】》Another difference between solid and expanding dies, which may be pointed out, is in the firmness with which the cutting edges are held. With a solid die, the edges or teeth being all combined in one solid piece, are firmly held in a fixed position; while with expanding dies their position has to be maintained by mechanical devices which are liable to yield under the pressure which arises in cutting. The result is, that the precision with which a screwing machine with movable dies will act, is dependent upon the strength of the 'abutment' behind the dies, which should be a hard unyielding surface with as much area as possible.There is nothing more interesting, or at the same time more useful, in the study of mechanics, than to analyse the action of cutting machines or other machinery of application, and to ascertain in examples that come under notice whether the main object of a machine is increased force, more accurate guidance, or greater speed than is attainable by hand operations. Cutting machines as explained may be directed to either of these objects singly, or to all of them together, or these objects may vary in their relative importance in different operations; but in all cases where machines are profitably employed, their action can be traced to one or more of the functions named.

Forging plant consists of rolling mills, trip-hammers, steam-hammers, drops, and punches, with furnaces, hearths, and blowing apparatus for heating. A general characteristic of all forging machines is that of a great force acting throughout a short distance. Very few machines, except the largest hammers, exceed a half-inch of working range, and in average operations not one-tenth of an inch.Draughting, or drawing, as it is more commonly called, is a means by which mental conceptions are conveyed from one person to another; it is the language of mechanics, and takes the place of words, which are insufficient to convey mechanical ideas in an intelligible manner.

An apprentice may get a clear idea of this venting process by inspecting tubular core barrels, such as are employed in moulding pipes or hollow columns, or by examining ordinary cores about a foundry. Provision of some kind to 'carry off the vent,' as it is termed by moulders, will be found in every case. The venting of moulds is even more important than venting cores, because core vents only carry off gas generated within the core itself, while the gas from its exterior surface, and from the whole mould, has to find means of escaping rapidly from the flasks when the hot metal enters.

A principle in mechanics may be known, and even familiar to a learner, without being logically understood; it might even be said that both theory and practice may be learned without the power to connect and apply the two things. A person may, for example, understand the geometry of tooth gearing and how to lay out teeth of the proper form for various kinds of wheels, how to proportion and arrange the spokes, rims, hubs, and so on; he may also understand the practical application of wheels as a means of varying or transmitting motion, but between this knowledge and a complete wheel lies a long train of intricate processes, such as pattern-making, moulding, casting, boring, and fitting. Farther on comes other conditions connected with the operation of wheels, such as adaptation, wear, noise, accidental strains, with many other things equally as important, as epicycloidal curves or other geometrical problems relating to wheels.

It may also be mentioned that lathes constructed with angular guides, have usually such ways for the moving heads as well as for the carriages; this gives the advantage of firmly binding the [125] two sides of the frame together in fastening the moving head, which in effect becomes a strong girt across the frame; the carriages also have an equal and independent hold on both sides of a shear. In following this matter thus far, it may be seen how many conditions may have to be considered in reasoning about so apparently simple a matter as the form of ways for lathe carriages; we might even go on to many more points that have not been mentioned; but what has been explained will serve to show that the matter is not one of opinion alone, and that without practical advantages, machine tool-makers will not follow the most expensive of these two modes of mounting lathe carriages.

The first of these operations includes all threading processes performed on lathes, whether with a single tool, by dies carried positively by slide rests, or by milling.

CHAPTER XXIII. FORGING.

Although a system but recently developed, the employment of hydraulic machinery for transmitting and applying power has reached an extended application to a variety of purposes, and gives promise of a still more extensive use in future. Considered as a means of transmitting regularly a constant amount [54] of power, water apparatus is more expensive and inferior in many respects to belts or shafts, and its use must be traced to some special principle involved which adapts hydraulic apparatus to the performance of certain duties. This principle will be found to consist in storing up power in such a manner that it may be used with great force at intervals; and secondly, in the facilities afforded for multiplying force by such simple mechanism as pumps. An engine of ten-horse-power, connected with machinery by hydraulic apparatus, may provide for a force equal to one hundred horse-power for one-tenth part of the time, the power being stored up by accumulators in the interval; or in other words, the motive power acting continuously can be accumulated and applied at intervals as it may be required for raising weights, operating punches, compressive forging, or other work of an intermittent character. Hydraulic machinery employed for such purposes is more simple and inexpensive than gearing and shafts, especially in the application of a great force acting for a considerable distance, and where a cylinder and piston represent a degree of strength which could not be attained with twice the amount of detail, if gearing, screws, levers, or other devices were employed instead.

In shading drawings, be careful not to use too deep tints, and to put the shades in the right place. Many will contend, and not without good reasons, that working drawings require no shading; yet it will do no harm to learn how and where they can be shaded: it is better to omit the shading from choice than from necessity. Sections must, of course, be shaded—not with lines, although I fear to attack so old a custom, yet it is certainly a tedious and useless one: sections with light ink shading of different colours, to indicate the kind of material, are easier to make, and look much better. By the judicious arrangement of a drawing, a large share of it may be in sections, which in almost every case are the best views to work by. The proper colouring of sections gives a good appearance to a drawing, and conveys an idea of an organised machine, or, to use the shop term, "stands out from the paper." In shading sections, leave a margin of white between the tints and the lines on the upper and left-hand sides of the section: this breaks the connection or sameness, and the effect is striking; it separates the parts, [85] and adds greatly to the clearness and general appearance of a drawing.

Institute of Plasma Physics, Hefei Institutes of Physical Science (ASIPP, HFIPS) undertakes the procurement package of superconducting conductors, correction coil, superconducting feeder, power supply and diagnosis, accounting for nearly 80% of China's ITER procurement package.

"I am so proud of our team and it’s a great pleasure for me working here," said BAO Liman, an engineer from ASIPP, HFIPS, who was invited to sit near Chinese National flay on the podium at the kick-off ceremony to represent Chinese team. BAO, with some 30 ASIPP engineers, has been working in ITER Tokamak department for more than ten years. Due to the suspended international traveling by COVID-19, most of the Chinese people who are engaged in ITER construction celebrated this important moment at home through live broadcasting.

One of ASIPP’s undertakes, the number 6 poloidal field superconducting coil (or PF6 coil) , the heaviest superconducting coil in the world, was completed last year, and arrived at ITER site this June. PF6 timely manufacturing and delivery made a solid foundation for ITER sub-assembly, it will be installed at the bottom of the ITER cryostat.

Last year, a China-France Consortium in which ASIPP takes a part has won the bid of the first ITER Tokamak Assembly task, TAC-1, a core and important part of the ITER Tokamak assembly.

Exactly as Bernard BIGOT, Director-General of ITER Organization, commented at a press conference after the ceremony, Chinese team was highly regarded for what they have done to ITER project with excellent completion of procurement package.

 

The kick-off ceremony for ITER assembly (Image by Pierre Genevier-Tarel-ITER Organization) 

 

the number 6 poloidal field superconducting coil (Image by ASIPP, HFIPS) 

  

ITER-TAC1 Contract Signing Ceremony (Image by ASIPP, HFIPS)

World dignitaries celebrate a collaborative achievement

Related Articles
Contact Us
  • 86-1999-99883v685 (day)

    86-1999-99885z652 (night)

  • 86-1999-998853658 (day)

    86-1999-990253658 (night)

  • [email protected]

  • 52 Sanlihe Rd., Beijing,

    China (1008666x)

Copyright © 2002 - Chinese Academy of Sciences